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The effect of an unsteady boundary layer on the pressure field around a bluff body has 
been investigated. It is found that in an unsteady flow the friction drag is always 
accompanied by a form drag whose magnitude is comparable with that of the former, 
and thus the pressure field around the unsteady boundary layer can be very different 
from that of an inviscid irrotational flow. The definition of the displacement thickness 
is modified accordingly and interpreted as a measure of the momentum of fluid trapped 
in the boundary layer rather than as the distance displaced laterally by the retardation 
of the flow in it. The result is consistent with previous specific numerical and analytical 
descriptions of these boundary-layer flows. 

1. Introduction 
In the boundary-layer theory, it is generally accepted that the pressure gradient 

ap/ax along the streamwise direction can be computed from the approximate equation 

where the x-component velocity u, just outside the boundary layer is regarded as given 
(Batchelor 1967, p. 305; White 1991, p. 230). In other words, the pressure is thought 
to be determinable without considering the detail of the boundary-layer flow. Thus 
Blasius (1908) and many later investigators (see Schlichting 1979, $XV.b) analysed the 
initial flow around, say, a circular cylinder starting impulsively from rest to move in a 
constant velocity, assuming that the pressure in and around the boundary layer does 
not vary with time. The form drag is also thought to be zero just after the start of 
motion but to increase with time as the boundary layer thickens and the flow separates 
(Stuart 1963, gV11.7). 

On the other hand, Collins & Dennis (1973) solved the full Navier-Stokes equations 
for the initial flow over an impulsively started circular cylinder using boundary-layer 
variables and showed that both the friction and pressure drag are infinite at the start 
of motion. Bar-Lev & Yang (1975) solved the same problem by the method of matched 
asymptotic expansions and got similar results on the form drag. Smith & Stansby 
(1988) simulated it by a Lagrangian vortex method and got drag coefficients which are 
in agreement with analytic results at small times. However, neither of these studies gave 
any physical reasons for the appearance of the form drag nor an explanation of the 
pressure field around the cylinder; they got results simply by integrating the vorticity 
gradient around the cylinder. 

Strictly speaking, the boundary-layer equations do not state that the pressure 
around the boundary layer will be the same as that of the inviscid flow around the 
body, but only that it is approximately uniform across the boundary layer and can be 
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replaced by that just outside the boundary layer. How greatly the flow in the boundary 
layer can change the pressure around it is another matter. It seems that Lighthill (1963, 
p. 87) was already aware of this about thirty years ago and understood how the 
developing boundary layer could affect the form drag.? However, he mentioned it only 
briefly and did not give any mathematical analysis. The purpose of this paper is, thus, 
to analyse the effect of the unsteady boundary layer on the pressure field around it in 
detail and to assess the unsteady form drag. In the next section, it is shown, using the 
momentum theorem, that in an unsteady flow the friction drag is always accompanied 
by a form drag whose magnitude is comparable with that of the former. The reasons for 
appearance of this unsteady form drag are considered in $ 3 : the displacement velocity 
at the outer edge of the boundary layer perturbs the velocity potential and pressure in 
the outer irrotational flow, and this unsteady pressure perturbation generates the form 
drag. The definition of the displacement thickness is also modified so that it can cope 
with the unsteady external flow and is interpreted as a measure of the momentum of 
fluid trapped in the boundary layer rather than as the distance displaced laterally by 
the retardation of the flow in it. Finally, conclusions are given in $4. 

2. Balance of momentum in an unsteady flow around a body 
Suppose that a body in an unbounded incompressible viscous fluid with density p 

and kinematic viscosity v has started to move rectilinearly some time ago and is now 
in motion with velocity - U(t) k, where t is the time elaspsed since the start of motion. 
The body, then, will experience a drag Dk and we want to know how this drag is 
transferred into the fluid. To this end the momentum theorem can be used. As a system 
of reference, we choose coordinates fixed in space so that the velocity at infinity is zero. 
For the control volume V we choose the region between a cylinder with the curved 
surface A, parallel to k and plane faces of area A ,  normal to k and the closed surface 
S which is coincident with the body surface at the instant (figure 1). The momentum 
theorem then gives, neglecting small viscous forces acting at the cylinder surface A,, 

(2) 
where wl, p l ,  and w2, p z  are the values of the k-component of the velocity u and the 
pressure at the upstream and downstream faces respectively. On the surface S the unit 
normal n is into the control volume (outward from the body). 

As the motion had started not long before, the vorticity generated at the solid surface 
has not been transferred far, but is clustered near the body and also the wake is short. 
Thus we can take the cylinder as big enough to enclose completely the region where the 
flow is rotational. Since there are no sources and sinks, the irrotational flow at large 
distances Y from the body will be like that of a source doublet and falls off as r-3 in three 
dimensions and r-' in two dimensions. Thus the total momentum flux through the 
surface and faces of the cylinder tends to zero as the areas A ,  and A ,  go to infinity. 
On the body surface the fluid velocity is equal to - Uk, the velocity of the body, and 
the second integral of (2) becomes zero. Thus (2) becomes 

t The author is grateful to Dr S. Cowley of the University of Cambridge for kindly bringing 
Lighthill's writings to his attention. 



Pressure distribution around unsteady boundary layers 439 

FIGURE 1. Control surface (broken line) used to obtain the drag on a body 
moving through a fluid. 

as the control volume goes to infinity. Furthermore, if we let the length of the cylinder 
go to infinity first and then the area A ,  of the face, the pressure integral goes to zero 
and we have 

D = -c( lim lvpwdV) 
at V+m 

(4) 

Thus in an unsteady flow the drag is balanced by the increase of momentum of fluid 
around the body. Suppose now that the wake has not yet been formed and the 
displacement thickness 8, is relatively small. Then the total momentum of the fluid will 
not change if we replace the real flow around the body by uniform motion, with 
velocity - Uk, of the mass of fluid between S and the surface 6, distant from S and the 
potential flow around the virtual body formed by the body and this uniformly moving 
mass of fluid. Thus (4) can be written as 

= Df+ D,, ( 5 )  
where the second integral is over the volume V' outside the virtual body and w' is the 
k-component velocity of potential flow around it. The second integral in (5) gives the 
added mass of the virtual body multiplied by the velocity U (Milne-Thomson 1968, p. 
491) and, hence, D, denotes the increasing rate of momentum due to the growth of the 
added mass as well as the acceleration of the body. Considering that the pressure is 
approximately uniform across the boundary layer and that the reaction in the potential 
flow is the resultant of pressure forces around the body, we can easily anticipate that 
D, is equal to the form drag and, hence, D, is the friction drag. Thus, since the added 
mass is proportional to the volume of the body (in this case, of the virtual body) for 
the given shape (Batchelor 1967, §6.4), the form drag D, is not zero but of the order 
of the friction drag D,, even if the body moves with a constant velocity. 
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The fact that the actual pressure field will be different from that of the inviscid 
irrotational flow can be inferred again as follows. Suppose now that the body is placed 
in the cylindrical tube A ,  with the cross-sectional area A ,  and the fluid comes with 
uniform velocity Uk from the left. Then, neglecting viscous forces acting at the 
cylindrical surface A ,  again, we have 

But the continuity equation gives that 

and we have, for constant U, 

D = jAF(p,+pw:-p,-pw3da,. 

jAp(P1-p3dA,, 

Schwarz's inequality (Jeffreys & Jeffreys 1978, p. 54), however, gives 

( pw? - p ~ i )  dA, = p( U 2  - w:) dA, < 0 j A F  j A F  
and we have 

or, letting the wall of the tube recede, 

Thus the mean pressure upstream of a body moving at a constant velocity should 
always be higher than that downstream of the body. 

3. Drag and displacement thickness 
Equation (5) shows that the drag acting on a body by the surrounding fluid and the 

pressure field around it are closely related to the thickening rate of the boundary layer. 
However, the conventional definition of the displacement thickness, 

(where u is the streamwise velocity parallel to the surface, ue the external velocity, and 
x, y the coordinates along and normal to the surface respectively) cannot be applied 
when u, varies in time. Neither can the displacement thickness be thought of as the 
distance through which streamlines just outside the boundary layer are displaced 
laterally by the retardation of the flow in the boundary layer. Thus we need a new 
definition and interpretation of the displacement thickness when the boundary layer is 
unsteady. 

The new definition and corresponding interpretation of the displacement thickness 
can be inferred from momentum considerations again. Suppose that the cylindrical 
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surface in figure 1 is replaced by any closed surface A with the unit outward normal 
n. The force F acting on the body in motion with velocity - U(t)  by the surrounding 
fluid becomes 

pvv-ndS- pndA- pvv.ndA. 
/A J A  

Now let v,, p,, and $ be the velocity, pressure, and velocity potential of the external 
potential flow, respectively. Then the velocity v and pressure p on the surface A ,  if the 
surface is taken sufficiently far from the body, can be replaced by the corresponding v, 
and pe and (8) becomes 

(9) 

In deriving (9) the relations (Batchelor 1967, p. 405), 

JAt$ndA = v,v,-ndA J A 

and 

are used. Note also that the second integral on the right-hand side of (8) is zero. 

region V, 
The divergence theorem gives, assuming that the potential $ has no singularity in the 

and (9) becomes 

(10) 

Equation (4) can be rederived from (9) as follows. The integral jAp$ndA is not 
absolutely convergent as’ the surface A goes to infinity, but depends on its shape. We 
can show, however, that it goes to zero if the surface A is a cylinder as in figure 1 and 
the length of the cylinder goes to infinity first. This order of integration is consistent 
with that to compute the drift volume and added mass of a body (Milne-Thomson 
1968, 59.222). Thus we have 

or 

F = -”( at V*m lim JvpvdV), 

Equations (10) and (11) can be rewritten as 
F = Ff+ F,, 

where 

and 

Ff = --( a lim [vp(v-ve)dV) 
at v+m 

(14) 

(15) 
FLM 255 
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Suppose now that the boundary layer is thin and the wake has not yet been formed. 
By adding the velocity U to u and u,, we can make the body stationary and the fluid 
arrive with velocity U. Then (13) becomes 

Ff = --( a lim /vp(u-ue)dY), 
at V'FO 

where velocities u and u, are relative to the body, i.e. 

u = v + U  and u,=u,+U.  

As the boundary layer is thin, the integral over the whole region Y in (16) can be 
replaced by that over the volume of the shell of thickness H covering the surface S of 
the body, where H is small compared to the radius of curvature of the surface. The 
velocity u, can be substituted by that of the inviscid flow with a vanishingly thin 
boundary layer, i.e. u, = uept, where ueP is the velocity of this inviscid flow on the 
surface and t a unit vector tangential to the surface. For simplicity, let us also assume 
that the flow is two-dimensional or axisymmetric. Then (16) becomes, neglecting small 
normal velocity components of u also, 

F f - a l  - rp(u,,--u)tdydS, 

where y is the coordinate normal to the surface. 
Now let the body move rectilinearly with the velocity 

- U(t) = - UoF(t) k, 
where Uo is a reference velocity and F(t) a function of time. Then the external velocity 
uJx, t )  can be written as 

Uep(X9  9 = F(t) = U , f ( X )  F(0,  
where x is the coordinate along the surface, and the functionflx) is the external velocity 
relative to the body when it moves with a unit velocity and depends only on the shape 
and orientation of the body. Thus, the generalized displacement thickness S,(x, t )  can be 
defined as 

PUeo(X) 6l(x, t )  = p{uep(x, t )  - 4x7 Y ,  t)> d~ 

The generalized displacement thickness reduces to the conventional one when the body 
moves in a constant velocity, but can take both positive and negative values for 
oscillating flows. Equation (17) now becomes 

P U , ~ ( X )  S,(X, t )  t dS 

In other words pue0 6, gives the momentum of fluid trapped in the boundary layer and 
the generalized displacement thickness 6, can be thought of as a measure of the 
momentum of this trapped fluid. 
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One effect of the boundary layer is to induce the transpiration (or displacement) 
velocity (Lighthill 1958) 

just outside the boundary layer, where s is a distance from the k-axis to the surface and 
k is zero for a two-dimensional field and one for an axisymmetric one. Owing to this 
displacement velocity, the external potential flow will also change and we can put 

d = d p + d f 3  (20) 
where d P  is the velocity potential due to the motion of the body and df that forced by 
the viscous displacement velocity out of the boundary layer. The velocity potential d p  
can be computed as usual, while d f  can be obtained by solving the Laplace equation 

with boundary conditions 
V2df = 0 

-V$,=O as r + m ,  

and - .*=vf on S,  
aY 

where r is the distance from some material point of the body. Equation (14) thus 
becomes 

Though df is O(S,), and thus small, adf /a t  which is O(aS,/at) can be large: for a flow 
around a body set impulsively to move, say, it is O ( v b )  and thus infinite just after the 
start of motion. Applying the unsteady Bernoulli equation but neglecting df except for 
its time-derivative aq5,/at, we also have for the pressure p around the body 

where p ,  is the pressure at infinity. 

time only, expressions for Ff and F, are simplified to 
When the displacement thickness 8, is uniform along the surface, i.e. a function of 

and 

where V,, So, and a are the volume, surface area, and coefficient of virtual inertia of the 
body, respectively. Il and I, also depend only on the shape, orientation, and direction 
of motion of the body, and are defined as 

15-2 
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and 

where the potential # A  satisfies the boundary condition 

-V$ ,=O as r + w ,  

and - 

For a circular cylinder of radius a, these become 

cos e COS e cos 0 , $*=-2a- , $f = -2Uoa8,-, $ p  = - Uoaz-- 
Y Y Y 

and Il = I, = k,  

where the azimuthal angle 0 is measured from the rear stagnation point. For a sphere 
of radius a, we also have 

and 

where the colatitude B is again measured from the rear stagnation point. 
As an example, consider the flow around a body which is set impulsively to move 

with constant velocity - U, k. Then, for small t ,  the velocity relative to the wall in the 
boundary layer can be approximated by 

Il = 21, = k,  

Y u = u,, erf ___ 
2 ( 4  

and the displacement thickness becomes 

2(vt)i 8 , = 7 .  
n2 

Thus, for the pressure p s  on the surface of the cylinder, we have from (22), again 
neglecting U0k.Vq5, which is of the order of a,, 

where Re = U o a / v  and r = Uot /a ,  

and the form drag D ,  becomes 

which is equal to the friction drag. Similarly, we have for the pressure on the surface 
of the sphere 
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and for the form drag 

which is the half of the friction drag. The last terms in (29) and (31) show that a very 
strong favourable pressure gradient appears along the surface of the body just after the 
start of motion and, due to this favourable pressure gradient, the form drag becomes 
infinite. Equation (30) is consistent with the leading term found by Collins & Dennis 
(1973) and Bar-Lev & Yang (1975). 

The reacting forces on a rapidly oscillating body can also be calculated similarly. Let 
the velocity of the body vary as - Uo eiWtk where i = 2/ - 1. If both 

WL S t = - + l  
UO 

and 

where L is the characteristic length of the body, the boundary layer is thin and the 
tangential component of velocity in the boundary layer relative to the body surface can 
be approximated (Batchelor 1967, p. 354) by 

u(y, t )  = u,,eiot(l -e-(l+i)g’p, (33) 
where 6 = (2v/w)i. The displacement thickness thus becomes 

and from (23) and (24) we have for the force coefficient C ,  of an oscillating cylinder: 

and of a sphere: 

where the Strouhal number St and Reynolds number Re are based on the amplitude 
velocity and radius, i.e. 

St = aw/Uo and Re = U, alv. 

Equations (35) and (36) are correct to the order of the boundary-layer thickness (Stuart 
1966, gVII.12). Equation (35) is also consistent with the first two terms of Wang (1968), 
who solved the Navier-Stokes equations for the flow around an oscillating cylinder 
through the method of inner and outer expansions. 

4. Conclusions 
In this study the effect of an unsteady boundary layer on the pressure field around 

it has been investigated. We have shown that the momentum theorem allows us to 
point out some general properties concerning the pressure around the unsteady 
boundary layer. 
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(i) In an unsteady flow the friction drag is always accompanied by a form drag 
whose magnitude is comparable with that of the former. Thus the form drag is also 
infinite just after the impulsive start of motion and then decreases in inverse proportion 

(ii) This form drag, and the friction drag, are due to growth of the boundary layer. 
Increase of mass or momentum of fluid which is trapped in the boundary layer and 
moves together with the body appears as a friction drag, while the accompanying 
growth of added mass or momentum of the external potential flow appears as a form 
drag. 

(3)  The pressure field around the unsteady boundary layer can be very different 
from that of inviscid irrotational flow: there appears a strong favourable pressure 
gradient along the surface of the body just after the impulsive start. 

It is also found that the conventional definition of the displacement thickness is not 
adequate for an unsteady boundary layer whose external velocity is varying rapidly. 
The momentum consideration again helps to modify the definition of the displacement 
thickness and to interpret it as the measure of the momentum of fluid trapped in the 
boundary layer rather than as the distance displaced laterally by the retardation of the 
flow in it. This new concept for the displacement thickness is found useful to analyse 
the unsteady forces acting on bodies in motion from the surrounding fluid. 

to Tk. 
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